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Abstract: The synthesis of four novel, “cationic”, a,u-disubstituted amino acids is described. The 
new amino acids use an orthogonal protection scheme making them suitable for incorporation via 
solid-phase peptide synthesis. 0 1997 Elsevier Science Ltd. 

a,a-Disubstituted amino acids (aaAAs), 1 (where R, R’ *H), are widely used in peptide design 

because of their structure promoting effects.1 a-Aminoisobutyric acid (Aib) and Aib-like residues 

(where R, R’ are not bulky) have been incorporated into peptides to form 310 or a-helices depending 

upon the design,2 percentage of aaAAs,3 and location of the aaAAs.4 Unfortunately, most aaAAs that 

have been incorporated are hydrophobic which precludes spectroscopic or crystallization experiments 

of peptides containing high percentages of aaAAs in aqueous media. 1,2b Very few examples of polar 

acxAAs suitable for incorporation into peptides have been reported in the literature.5*6 Polar aaAAs are 

a must for the synthesis of short, highly helical, water soluble peptides containing high percentages of 

aaAAs. These peptides are integral to the study of the 3 IO/a-helix equilibrium, the investigation of the 

stability of the 3 to-helix in aqueous media, and in the design of short antimicrobial peptides. Herein 

we report the synthesis of a series of polar a&As suitable for incorporation into peptides. 
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The general structure of the amino acids is shown above, 2. The amino acids are constructed from a 6- 

membered ring backbone due to the high helix promoting effects previously exhibited by cyclic aaAAs 

in short peptides.2ay7 The polar functionality is introduced via reductive amination which provides 
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flexibility for the incorporation of a wide variety of R” groups, such as hydrophobic chains, additional 

polar groups, or fluorescent probes. This side chain nitrogen will be protonated under physiological 

conditions and under conditions normally used for aqueous spectroscopic characterization. 

The synthesis begins with a reductive amination on the commercially available 1,4- 

cyclohexanedione monoethylene ketal3 with the amine of choice (1.1 equiv.), acetic acid (1 .O equiv.), 

and sodium triacetoxyborohydride (1.6 equiv.) in 1,2-dichloroethane to give 4.* Sodium 

cyanoborohydride was also tried as the reducing agent but gave unsatisfactory yields as compared to 

the acetoxy compound. The ketone functionality is unmasked by treating 4 with a 20% trifluoroacetic 

acid/water solution and heating to reflux in THF for 24 hours to yield 5. To obtain an amino acid 

suitable for Fmoc solid-phase peptide synthesis, the side chain must be orthogonally protected with 

respect to the a-nitrogen. Thus, the nitrogen on ketone 5 is protected with t-butyloxycarbonyl (Boc) 

using Et3N (0.95 equiv.), (Boc)2-0 (1.14 equiv.) and a catalytic amount of DMAP in THF to give 6. 

3 4a RI= ethyl 

4b R,= butyl 6a-d R2=Boc 

4c RI= benzyl 

4d RI= 2-naphthylmethyl 

7a-d R,= H 

6a-d R3= Boc 

Ketone 6 is then converted to hydantoin 7 using a Bucherer-Bergs procedure.5,9 At this point, 

conventionally the hydantoin would be hydrolyzed using harsh conditions (i.e. barium hydroxide in a 

Parr” Bomb) which could effect the Boc protecting group. Therefore, we use a mild hydrolysis 

method developed by Rebek in which the hydantoin nitrogens are activated by reaction with (Boc)2-0 

to give 8.5JO The selective hydrolysis is accomplished with 1N lithium hydroxide (8 equiv..) and THF 

as a co-solvent at room temperature to give amino acid 9. The a-nitrogen is protected with 

fluorenylmethyloxycarbonyl (Fmoc) using TMS-Cl (2.5 equiv.), DIEA (3.0 equiv.), and Fmoc-Cl (1.1 

equiv.) in methylene chloride. Protecting the a-nitrogen of a very hydrophobic amino acid of this type 

is difficult using traditional methods with aqueous/organic mixtures because of the extreme non-polar 

nature of the side chain (protected). The method we use, developed by Bolin and co-workers,11 

solubilizes the amino acid by forming the silyl ester in neat organic media' thereby allowing protection 

of hydrophobic amino acids. The crude product obtained from the Fmoc reaction is purified over silica 

gel using CHC13/MeOH mixtures to give pure 2.12 
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The method provides a general route to polar ac~AAs with R groups of varying hydrophobicity. 

This method could also be easily adapted to the synthesis of fluorescent or other tagged cuxAAs. We 

plan to study the effects of the hydrophobic chains on antimicrobial activity and helicity. 
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